Flexibility in Design
Flexibility in Design
Modern applications have to deal with a range of evolving data, so it is necessary that their backend data stores are equipped to deal with sudden schema changes. Relational databases are highly structured and have a rigid schema that is defined at the time of design. Getting the structure right the first time is important for these databases as revisions are laborious and difficult to achieve without disrupting the application. NoSQL databases, on the other hand, allow the data model to evolve with the application and the business environment, which makes them ideal for iterative and agile development.
Performance at Scale
Performance at Scale
Relational databases achieve consistency through data normalization or the organization of data into multiple tables in a way that removes data duplication. However, as the data grows in volume, and with it the number of tables and joins, performance takes a hit. For a large number of applications that integrate social networking and cloud computing, availability and partition tolerance have become critical properties, more so than consistency. NoSQL databases are a great fit for such applications as they are built to scale horizontally and cost-effectively without interrupting access. They also offer variable choices in data consistency.
Diversity in Data Types
Diversity in Data Types
Relational databases are good at handling highly structured data such as sales, inventories, ledger, payroll, among others. But the range of data that businesses have to deal with today has expanded greatly. Apart from business transactions, data processing systems have to make sense of a gamut of digital interactions that generate information of diverse structures. There are also different formats to be dealt with, including binary documents like image, video, and audio. Some NoSQL databases offer efficient storage and processing capabilities for one or many of these data types and enable retrieval with little downtime.